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Applications

Autonomous driving

Medical treatment Human-person interaction




Semantic segmentation

[0 make dense predictions inferring labels for every pixel




Fully Convolution Network
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Figure 1. Fully convolutional networks can efficiently learn to
make dense predictions for per-pixel tasks like semantic segmen-
tation.
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Figure 2. Transforming fully connected layers into convolution
layers enables a classification net to output a heatmap. Adding
layers and a spatial loss (as in Figure 1) produces an efficient ma-
chine for end-to-end dense learning.



Challenges

[0 Resolution
B 32x down-sample for classic classification models at pool5

factor | mean IU

128 | 50.9
64 | 73.3

32 | 86.1

16 | 92.8

8 | 96.4

4 | 98.5

[0 Contexts

B Objects may have multiple scales and it is hard for convolution kernels to handle a
large variation of scales



FCN
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Figure 3. Our DAG nets learn to combine coarse, high layer information with fine, low layer information. Pooling and prediction layers are
shown as grids that reveal relative spatial coarseness, while intermediate layers are shown as vertical lines. First row (FCN-32s): Our single-
stream net, described in Section 4.1, upsamples stride 32 predictions back to pixels in a single step. Second row (FCN-16s): Combining
predictions from both the final layer and the poo14 layer, at stride 16, lets our net predict finer details, while retaining high-level semantic
information. Third row (FCN-8s): Additional predictions from pool3, at stride 8, provide further precision.

Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation CVPR 2015.



SegNet

[0 Upsample with corresponding pooling indices

Convolutional Encoder-Decoder

Input Output

Pooling Indices

RGB Image I Conv + Batch Normalisation + RelU Segmentation
I Fooling I Upsampling Softmax

Fig. 2. An lllustration of the SegNet architecture. There are no fully connected layers and hence it is only convolutional. A decoder upsamples its input
using the transferred pool indices from its encoder to produce a sparse feature map(s). It then performs convolution with a trainable filter bank to den-
sify the feature map. The final decoder output feature maps are fed to a soft-max classifier for pixel-wise classification.
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Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
TPAMI 2017



U-Net

[0 Dense concatenation with encoder features

input
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Fig. 1. U-net architecture (example for 32x32 pixels in the lowest resolution). Each blue
box corresponds to a multi-channel feature map. The number of channels is denoted
on top of the box. The x-y-size is provided at the lower left edge of the box. White
hoxes represent copied feature maps. The arrows denote the different operations.

Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation MICCAI 2015



Deeplab
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L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. Semantic image segmentation with deep convolutional nets and
fully connected CRFs. ICLR 2015



Deeplab

[0 Dilated convolution

B Remove last few pooling operation for a dense prediction.
B Introduce dilated convolution to utilize the ImageNet pre-trained model

Output feature

Convolution
kernel =3
stride =1
pad=1

Input feature .

(a) Sparse feature extraction
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Fig. 2: Illustration of atrous convolution in 1-D. (a) Sparse _. ) L
. . . Fig. 3: Illustration of atrous convolution in 2-D. Top row:
feature extraction with standard convolution on a low reso-

lution input feature map. (b) Dense feature extraction with SParse feature extraction with standard convolution on a

atrous convolution with rate = 2, applied on a high low resolution input feature map. Bottom row: Dense fea-

resolution input feature map. ture extraction with atrous convolution with rate » = 2,
applied on a high resolution input feature map.

L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. Semantic image segmentation with deep convolutional nets and
fully connected CRFs. ICLR 2015



Deeplab

[0 LargeFOV
B Dilated convolution with large rate can capture features with a large field of view.

(a) DeepLab-LargeFOV

[0 Multi-scale Prediction
B Jump connection for more precise boundaries

L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. Semantic image segmentation with deep convolutional nets and
fully connected CRFs. ICLR 2015



Deeplab

[0 Fully connected CRF
B Refine boundaries
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L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. Semantic image segmentation with deep convolutional nets and
fully connected CRFs. ICLR 2015



Deeplab v2

[0 Atrous spatial pyramid pooling(ASPP)

(b) DeepLab-ASPP

Chen L C, Papandreou G, Kokkinos I, et al. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution,
and fully connected crfs TPAMI 2018



Deeplab v3

[0 Deeper models
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(b) Going deeper with atrous convolution. Atrous convolution with rate > 1 is applied after block3 when owfput_stride = 16.
Figure 3. Cascaded modules without and with atrous convolution.
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Figure 5. Parallel modules with atrous convolution (ASPP), augmented with image-level features.

Chen L C, Papandreou G, Schroff F, et al. Rethinking atrous convolution for semantic image segmentation arXiv 2017



Deeplab v3+
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Figure 2. Our proposed DeeplLabv3+ extends DeepLabv3 by employing a encoder-decoder structure. The encoder module encodes multi-

scale contex tual information by applying atrous convolution at multiple scales, while the simple yet effective decoder module refines the
segmentation results along object boundaries.

Prediction

Chen, Liang-Chieh,Zhu, Yukun et al. Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation ECCV
2018



DenseASPP
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Maoke Yang, Kun Yu, Chi Zhang, Zhiwei Li, Kuiyuan Yang DenseASPP for Semantic Segmentation in Street Scenes CVPR 2018



DenseASPP

[0 Scale diversity
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Maoke Yang, Kun Yu, Chi Zhang, Zhiwei Li, Kuiyuan Yang DenseASPP for Semantic Segmentation in Street Scenes CVPR 2018



PSPNet

[0 Pyramid pooling / deep supervision
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Figure 3. Overview of our proposed PSPNet. Given an input image (a), we first use CNN to get the feature map of the last convolutional
layer (b), then a pyramid parsing module is applied to harvest different sub-region representations, followed by upsampling and concatena-
tion layers to form the final feature representation, which carries both local and global context information in (c). Finally, the representation
i5 fed into a convolution layer to get the final per-pixel prediction {d).

Figure 4. Mustration of auxiliary loss in ResNetl01l. Each bloe
box denotes a residue block. The auxiliary loss is added after the
resdb2? residue block.

Zhao H, Shi J, Qi X, et al. Pyramid scene parsing network CVPR 2017



RefineNet
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Lin G, Milan A, Shen C, et al. RefineNet: Multi-path Refinement Networks for High-Resolution Semantic Segmentation CVPR 2017



EncNet

[J Channel-wise attention with dictionary

[J Add another semantic-encoding loss (classification loss) to balance the
small objects and large objects

__Context Encoding Module
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Zhang H, Dana K, Shi J, et al. Context encoding for semantic segmentation CVPR 2018.



PSANet

[0 Pixel-wise attention
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Fig. 3. Illustration of Point-wise Spatial Attention.

Zhao H, Zhang Y, Liu S, et al. PSANet: Point-wise Spatial Attention Network for Scene Parsing ECCV 2018
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Yuan Y, Wang J. Ocnet: Object context network for scene parsing arXiv preprint arXiv:1809.00916, 2018.



CCNet
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Huang Z, Wang X, Huang L, et al. CCNet: Criss-Cross Attention for Semantic Segmentation arXiv preprintarXiv:1811.11721, 2018.




Datasets

[0 Pascal VOC 2012

B 20 classes
B 10000+ training / 1449 validation




Datasets

[0 Cityscapes
B 19 classes
B 2975 train / 500 validation




Evaluation

[0 Pixel Acc
B As a pixel-wise classification problem

[0 mioU
B Calculate lIoU for each class among images and average by classes



Results

Table 3: Comparison to state-of-the-art on the test set of

Cityscapes.
Method Conference Backbone mloU (%)
PSPNet [13]T CVPR2017 ResNet-101 78.4
PSANet [34]T ECCV2018 ResNet-101 78.6
OCNet! - ResNet-101 80.1
RefineNet [ 3]* CVPR2017 ResNet-101 73.6
SAC [32]F ICCV2017 ResNet-101 78.1
DUC-HDC [23]F | WACV2018 | ResNet-101 77.6
AAF [9]} ECCV2018 | ResNet-101 79.1
BiSeNet [28]* ECCV2018 ResNet-101 78.9
PSANet [31]* ECCV2018 ResNet-101 80.1
DFN [20]% CVPR2018 ResNet-101 79.3
DSSPN [12]F CVPR2018 ResNet-101 77.8
DepthSeg [10]* CVPR2018 | ResNet-101 78.2
DenseASPP [27]F| CVPR2018 | DenseNet-161 80.6
OCNet? - ResNet-101 81.7

I Training with only the train-fine datasets.
¥ Training with both the train-fine and val-fine datasets.



Results

Table 4: Comparison to global pooling (GP), pyramid pooling
module (PPM) in PSPNet [ ], and atrous spatial pyramid pooling

(ASPP) in DeepLabv3 [ ] on the validation set of ADE20K.

Method mloU (%) Pixel Acc (%)
ResNet-50 Baseline 34.35 + 0.01 76.41 £ 0.01
ResNet-50 + GP [16] 41.17 £ 0.38 79.87 4+ 0.04
ResNet-50 + PPM [ 3] 41.34 4+ 0.01 79.96 + 0.01
ResNet-50 + ASPP [ 1] 42.53 + 0.03 80.44 4 0.01
ResNet-50 + Base-OC 40.66 + 0.26 79.77 £ 0.03
ResNet-50 + Pyramid-OC | 42.28 + 0.08 80.21 £+ 0.03
ResNet-50 + ASP-OC 43.06 £ 0.01 | 80.70 + 0.01




Instance Segmentation

[0 Detection and segmentation for individual object instances




challenges

[0 Small objects
B There are many small objects which are hard to detect and segment

[0 Annotations are exchangeable

B Unlike semantic segmentation problems, annotations are hard to directly be applied
in the network



Methods

[0 Proposal-based: from detection to segmentation
B Bounding boxes(proposals) from SS/RPN/Faster R-CNN
B Try to generate mask within the proposal

[0 Proposal-free: learn to cluster
B pixel-level featuers / necessary information
B Clustering pixels
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Dai J, He K, Sun J. Instance-aware semantic segmentation via multi-task network cascades CVPR 2016



Instance sensitive FCN

[0 Position sensitive maps

FCN for semantic segmentation

score map
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Figure 1. Methodological comparisons between: (top) FCN [1] for semantic segmen-
tation; (bottom) our InstanceFCN for instance segment proposal.

Dai J, He K, Li Y, et al. Instance-sensitive fully convolutional networks ECCV 2016



Instance sensitive FCN

[0 Pooling within fix-size window
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Dai J, He K, Li Y, et al. Instance-sensitive fully convolutional networks ECCV 2016



FCIS

[0 Enhanced position-sensitive map
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Figure 2. Instance segmentation and classification results (of “person™ category) of different ROIs. The score maps are shared by different
ROIs and both sub-tasks. The red dot indicates one pixel having different semantics in different ROIs.

Li Y, Qi H, Dai J, et al. Fully Convolutional Instance-Aware Semantic Segmentation CVPR 2017



FCIS
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Figure 3. Overall architecture of FCIS. A region proposal network (RPN) [3-] shares the convolutional feature maps with FCIS. The
proposed region-of-interests (ROIs) are applied on the score maps for joint object segmentation and detection. The learnable weight layers
are fully convolutional and computed on the whole image. The per-ROI computation cost is negligible.

Li Y, Qi H, Dai J, et al. Fully Convolutional Instance-Aware Semantic Segmentation CVPR 2017



Mask R-CNN
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He K, Gkioxari G, Dolla P, et al. Mask r-cnn ICCV 2017



DetNet

[0 Deeper. more stages
[0 Keep spacial information

B:Dilated bottleNeck with C:Original bottleNeck
1x1 conv projection

A:Dilated bottleNeck
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E: Feature Pyramid Structure

Li Z, Peng C, Yu G, et al. Detnet: Design backbone for object detection ECCV 2018



PANet

[0 Path augmentation
[0 Adaptive feature pooling
[0 Heavier mask head

BT T T T T R T TR i SR | O | T T J
Figure 1. Nlustration of our framework. (a) FPN backbone. (b) Bottom-up path augmentation. (c) Adaptive feature pooling. (d) Box
branch. () Fully-connected fusion. Note that we omit channel dimension of feature maps in (a) and (b) for breviry.

Liu S, Qi L, Qin H, et al. Path aggregation network for instance segmentation CVPR 2018



Proposal-free network

Convolutional feature maps Category-level confidences

Instance-level
segmentation

fo Instance number

=|] 'l:lm'd H Clustering |-

Instance locations

the pixel-level information that includes the category-level confidences for each pixel and the coordinates of
the instance bounding box each pixel belongs to. The instance location prediction for each pixel involves the
coordinates of center, top-left corner and bottom-right corner of the object instance that a specific pixel belongs
to. Any off-the-self clustering method can be utilized to generate ultimate instance-level segmentation results.

Liang X, Wei Y, Shen X, et al. Proposal-free network for instance-level object segmentation arXiv preprint arXiv:1509.02636, 2015.



InstanceCut
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Figure 3: Instance-aware edge detection block. The semantic segmentation FCN is the front-end part of the network [52]

Image Partition > N _ ] > ) N
trained for semantic segmentation on the same dataset. Its intermediate feature maps are downsampled, according to the size

\ of the smallest feature map, by a max-pooling operation with an appropriate stride. The concatenation of the downsampled
maps is used as a feature representation for a per-pixel 2-layer perceptron. The output of the perceptron is refined by a context
network of Dilation 10 [5 2] architecture.

instance segmentation

Kirillov A, Levinkov E, Andres B, et al. Instancecut: from edges to instances with multicut CVPR. 2017
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Figure 1. Sequential Grouping Networks (SGN): We first predict breakpoints. LineNet groups them into connected components, which
are finally composed by the MergerNet to form our final instances.
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Liu S, JiaJ, Fidler S, et al. Sgn: Sequential grouping networks for instance segmentation ICCV 2017.



dataset

[0 Cityscapes

B 9 classes with instance annotations




dataset

T —
0 COCO

B 81 classes




Evaluation

OO APS50

B If loU is larger than 0.5 with ground truth, we take them as positive
0 mAP:

B Same as detection
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Table 8. Comparison of instance segmentation results between our approach and other
state-of-the-art on MSCOCO test-dev datasets. Benefit from DetNet-59, we achieve a

new state-of-the-art on instance segmentation task.

Method | ApbP AP2Y APYY APY N APPP Backbone
Champion 2016 [27] 41.6 62.3 45.6 24.0 43.9 55.2 2xResNet-101 + 3 xInception-ResNet-v2
RentinaNet [36] 39.1 59.1 423 21.8 42.7 50.2 ResNet-101
Mask R-CNN [21]+FPN [35] 38.2 60.3 41.7 20.1 41.1 50.2 ResNet-101
Mask R-CNN [21]+FPN [35] 39.8 62.3 434 22.1 43.2 51.2 ResNeXt-101
PANet / PANet [ms-train] | 41.2/425 604/62.3 444/46.4|22.7/263 44.0/47.0 546/523 ResNet-50
45.0/474 65.0/67.2 48.6/51.8|254/30.1 48.6/51.7 59.1/60.0 ResNeXt-101

PANet / PANet [ms-train]

Table 2. Comparison among PANet, winner of COCO 2016 object detection challenge, RentinaNet and Mask R-CNN on COCO test-dev
subset in terms of box AP, where the latter three are baselines.




Graph merge

I Pixel affinity
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Graph merge

[0 Graph merge algorithm:
B Regard the whole image as a graph
B Pixels as vertexes and affinities as edges
B Find the largest edge in the graph and merge two pixels together
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Implementation details

[0 Excluding Backgrounds (generating ‘rois’ and resize)
[ Affinity Refinement based on Semantic class

[0 Forcing Local Merge

[0 Semantic Class Partition
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Results

Table 2. Graph Merge Strategy: we test for our graph merge strategies for our al-
gorithm including PAR.: Pixel Affinity Refinement, RR.: Resizing ROIs, FLM: Forcing
Local Merge and SCP: Semantic Class Partition. Note that 2 and 4 in FLM represent
the merge window size, default as 1.

"o 3
"o S
Retence g 16
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PAR RR FLM SCP AP

18.9
v 22.8
v v 28.7
v v 2 20.2
v v 1 27.5

v v 2 v 307

Table 3. Additional inference strategies: We test for additional inference strate-
gies for our algorithm including Semantic OS: output stride for semantic branch,
Instance O8S: output stride for instance branch SHF: Semantic horizontal flip infer-
ence, IHF': Instance horizontal flip inference and SCR.: Semantic Class Refinement. We
also list several results from other methods for comparison.

Methods Semantic OS Instance OS SHF IHF SCR AP
DWT(3] 21.2
SGN|[37] 29.2
Mask RCNN|[23] 31.5
30.7

31.2

31.2

32.1

32.8

v 32.6
v v 33.5
v v v 341
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Results on Cityscapes test set

Table 1. Instance segmentation performance on the Cityscapes fest set. All results
listed are trained only with Citysecapes.

Methods person | rider | car |trunk | bus | train | mcycle | bicvele | AP 50% | AP
InstanceCut[20] | 10,0 | 8.0 | 23.7 | 140 | 195 | 152 0.3 4.7 27.9 13.0
SAIS[22] 146 | 129 | 357 160 | 23.2 | 19.0 | 103 7.8 36.7 174
DWT|3] 1556 | 141 | 3165 225 | 27.0| 229 | 139 8.0 35.3 19.4
DIN[2] 16,5 | 16,7 | 257 | 206 | 30,0 | 234 | 171 10.1 38.8 20.0
SGN|[37] 21.8 [ 201 | 394 | 24.8 | 33.2 | 30.8 | 17.7 12.4 44.9 25.0
Mask RCNN[23] | 30.5 | 23.7 |46.9 [ 22.8 | 322 | 186 | 191 16.0 49.9 26.2
Ours 31.5 | 25.2| 423 | 21.8 |37.2| 2809 | 188 12.8 456 | 27.3




